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Abstract. This paper presents an analytical and numerical investigation of the energy spectrum of
two-dimensional Bloch electrons subject to a periodic potential of square and hexagonal symmetry
and a perpendicular sine-modulated magnetic field, applying the tight-binding model. The energy
spectrum is found using an effective Hamiltonian obtained by employing the Peierls substitution in
the ground-state energy band function. The resulting@thger equation is solved by applying a
matrix method. The energy spectrum found exhibits recursive properties similar to those discussed
by Hofstadter for the case of a uniform perpendicular magnetic field. Itis the objective of this paper
to show that this technique can be extended successfully in the presence of a modulated magnetic
field of arbitrary strength. We successfully demonstrate a Hofstadter-type spectrum in the presence
of both a uniform and a modulated magnetic field.

1. Introduction

The energy spectrum of an electron system under the influence of both a periodic potential and
a magnetic field has been intensively studied in the last three decades. Recent studies of the
effects of a periodic magnetic field have attracted renewed theoretical interest in the field [1-8].
With the development of submicron lithography and nano-fabrication techniques it became
possible to create crystals in which experimental indications of the Hofstadter spectrum can
be found, demonstrating the validity of the underlying physics [9-13].

Theoretical solution of the problem of the energy spectrum for electron systems has been
addressed in two fundamentally different ways. The tight-binding and the nearly-free-electron
methods are known to represent opposite approaches to the calculation of the electronic band
structure in crystals. The tight-binding method, applicable in the limit of weak magnetic
fields, is a semiclassical method, which starts from electron states localized in real space at
different lattice sites and introduces a single-band effective Hamiltonian by the application
of the Peierls’s substitution [14-17]. The nearly-free-electron method, on the other hand, is
a quantum mechanical approach that is suitable for strong magnetic fields [18-23]. It starts
from plane waves localized in reciprocal space and uses free-electron Landau eigenstates as
a basis and the periodic lattice potential as a perturbation. It is well known that there is a
strong resemblance between the energy spectrum of 2D tight-binding electrons subject to a
uniform perpendicular magnetic field, and that of electrons in Landau states interacting with
a 2D periodic potential. The inclusion of harmonic functions, corresponding to the excited
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states in the matrix elements of the potential, is equivalent to tight-binding models with more
nearest-neighbour interactions [21]. In the study of 2D electrons in a magnetic field the use of
the tight-binding model has provided significant insight. Most of the knowledge that we have
concerning the spectrum and density of states in magnetic fields derives from the analysis of
simple square or hexagonal tight-binding Hamiltonians [24—27]. These analyses suggest that
a recursion is present in the energy spectrum. Increased attention has been given lately to the
study of the spectrum in the case where there is an anisotropy of the hopping integrals. An
asymmetry in the hopping strength can lead to a closing of the gaps [28].

Recently there has been extensive study of electronic properties of 2D electron systems
under nonuniform magnetic fields. However, these studies focused on the effects of magnetic
modulation on free electrons while the problem of calculating the effect of magnetic modulation
on Bloch electrons remains far less explored.

This paper studies the electronic properties of a two-dimensional (2D) electron system

(ES) under the influence of both a periodic potential and a perpendicular one-dimensional
(1D) sine-modulated (SM) magnetic field. The solution to this problem is sought by following
the semiclassical method applicable in the low-magnetic-field regime. The method was first
introduced by Peierls [27] and consists of replacing the Hamiltonian by the tight-binding
electron energy operatdt(k) with the Bloch indexk replaced by the operat¢p — e A) /7.
The resulting Sclidinger equation is a finite-difference equation whose eigenvalues can be
computed for arbitrary wavenumbers by using a matrix approach. Following the calculations
of Gumbs, Miessein, and Huang [29] the Harper equation is modified by adding an additional
flux-dependent phase factor due to the SM magnetic field.

Recently [29], we chose a parameter for the modulating field which was not applicable and
thereby obtained some inaccurate numerical results. Here, we now show how a modulating
magnetic field leads to energy band structure that is different from the Hofstadter’'s spectrum
and demonstrate how the self-similarity appearing in the Hofstadter’s spectrum breaks down.
Also, we present results for anisotropic hopping on the lattice in the presence of a modulating
magnetic field [30]. Our method [29] can predict the energy spectrum of 2D electrons in
a square lattice under magnetic modulation, since the method has no theoretical flaws. For
rational values of: /b (wherea is the lattice constant, whilkis the period of the modulating
field) not equal to one, the model works when the amplitude of the modulating magnetic field is
small compared with the uniform component. This paper underlines the importance of paying
the required attention to even the smallest detail in the process of applying simplifications to
mathematical relations when working in a certain theoretical model, as the conclusions drawn
depend on the outcome of the calculations. It should however, be pointed out that the newly
conducted calculations do not in any way confirm the applicability of the assumption that the
Hofstadter-type spectrum disappears under the conditions of study.

2. General formulation of the problem

2.1. Square lattice

Consider a two-dimensional square lattice with the corresponding periodic potential in the
x—y plane and the magnetic field in thedirection. The magnetic field is expressed as
B = [Bo + B1(x)]z where By is the magnitude of the uniform component aBdis the
magnitude of the modulation field. Although other types of modulation are also possible, this
paper discusses the sine-modulated field

B= |:Bo+Blsin (27%)} 2 1)
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parallel to thez-axis, whereb is a constant. The corresponding vector potentiallis=
(0, Ay (x), 0) in the Landau gauge with

Bib 2w x
Ay(x) = Box — E COS(T>. (2)
Assuming a tight-binding dispersiaerik), Hofstadter [24] obtained the Sdtinger equation
e(k) = 2t, cogk.a) + 2t, cogkya) 3)

wherer, andt, are the tunnelling bandwidths in the and y-directions and: is the lattice
constant. Make the Peierls substitution

ki — pu/h ky — (ﬁy +6Ay(x))/ﬁ- (4)
This yields the effective Hamiltonian
/’f[(p) =t {eiaﬁx/ﬁ + efiaﬁx/ﬁ} + t {eiae/iy(x)/ﬁeiaﬁy/ﬁ + efiue/iy(x)/ﬁefiaﬁy/ﬁ} ) (5)

Using the property ofAtransIationaI operators in the plarté&"|r) = |r + R) along with the
Schibdinger equatio®?( p)|r) = E|r) leads us to the eigenvalue equation for the ground-state
energy of an electron in the 2D square lattice:

Iy [¢k(-x —a, )’) + ¢k(-x ta, y)]
+1, [ Oy —a) + €O g (x v+ )| = Egrr ). (6)

We now sek = ma, y = na wherem andn are integers. Inthe Landau gauge the variable
y is cyclic and can be separated in equation (6) using the following relation:

¢r(ma, na) = expikyna)gy(m).
As a consequence, the Sodinger equation becomes

A,
t [gi(m — 1) + g(m + )] + 21, cos(“e }_;(x) = kya>gk(m) = Egy(m). (7)

Equation (7) can be rewritten to give the modified Harper equation in matrix form for the
square lattice with a SM magnetic field as

(gk(m +1)) _ (5 — Aplky, a, B) —1> ( gr(m) ) ®)
gr(m) 1 0 ge(m —1)

Ay, @, B) = 21 COS<27rm(x - %y cos2rmp) — k_,,a). 9)

with

Here, we have introduced the following notation:

a=a’Bo/(h/e)  B=a/b  y=Bi/Bo

n=ty/t € =E/t,.
Thus the effect of magnetic modulation can be studied without any condition imposed on the
modulating field. The modified Harper equation (8) in the presence of magnetic modulation
has an additional term proportional owhich is the ratio of the amplitude of the magnetic
modulation to the uniform magnetic field when the amplitude of the modulating field is much
less than the constant external magnetic field.

Assume thatr = p/q wherep andq are integers and let take all integer values from

1 to ¢ in equation (8) to generate a systemgoéquations. Thesg equations only repeat
themselves iB = 1 which means by equation (1) that there is no effect from modulation since
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we setx = ma. If a andb are not commensurate, i..,is irrational, there is no periodicity

in the x-direction. Consequently, there is no fixed relation betweand the number of split
subbands in a Bloch band. #fis irrational, there is no fractal band structure. However, when
B = r/s, wherer ands are integers, the equations fgg(m) will be unchanged under the
replacementn — m + sq. Therefore, the period in the-direction will besqga instead of

ga when there is no modulation, and there will fag subbands split from a Bloch band for

a=pl/q.
We now use the Bloch condition for the electron wavefunction and take

g (0) = e 996, (5q) ge(sq +1) = hsavgy (1) (10)

Thus, we have transformed a two-dimensional problem into a one-dimensional one. Moreover,
it will be sufficient to only solve the problem in the first magnetic Brillouin zone and within

a unit cell. Since Harper’s equation is periodically repeated adterycles, equations (8) and

(10) together give the following eigenvalue equation:

gD gr(D
gr(2) gr(2)
é e = Ak, a, B) o (11)
gr(sq — 1) gr(sq — 1)
gr(sq) gr(sq)

where the matrix to be diagonalized is

Aq 1 0 0 O 0 0 giksaa
1 A, 1 0 O 0 0 0
0 1 A3 1 O 0 0 0
Akap=| 0 0 D0 T 000 12)
O 0 0 0 0 Ao 1 0
0 0 0 0 0 1 Aya 1
ghsie 90 0 0 0 0 1 Ay

From the matrix equation (11), we deduce the following conclusions:

(@) Fory = 0, there is no modulating magnetic field, and the matrix reduces to the one
obtained by Hofstadter [24].

(b) For a chosen value @f = a/b, cog27mp) in the second term of equation (9) vanishes
for certain values ofn, leading to the cancelling of the modulating component. These
values aren = (2L +1)/(48), whereL is an integer. This means that for certain choices
of the modulation period, there is no contribution due to the modulating field to the matrix
elements in equation (12).

(c) For the wave-vector replacemeht — —k,, there is a corresponding change
A(k,a, B) — A*(k,a, B). Therefore, the energy eigenvalues are not altered by this
change in the wave vector.

(d) Wheny = 0 andk, — —k,, m — —m, the matrixA(k, «, ) in equation (12) is
unchanged. Therefore, the energy eigenvalues remain the same under this transformation.
This is not true fory #£ 0.
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(e) Whenk, — k, + 27j/(sqa), for any integerj, we obtain the same matrix(k, «, 8) in
equation (12). This implies that all of the eigenvalues have perigdsga) in k.-space
for any fixed value ofq. This is true for both cases with = 0 and withy # 0.

() If ky, — k, = 27j/a, for any integerj, all eigenvalues remain the same. This means that
the energy spectrum ik,-space has periodna. Moreover, fork, — k, + 2 ja/a,
equation (12) will be unchanged when— m + j, for y = 0. However fory # 0, this
matrix invariance is only true if8 is an integer.

(9) Wheny = 0, clearly fork, = 0, the transformatione — ¢ — « ande — —a in
equation (12) are equivalent to the change—~ —m. As a result, all of the energy
eigenvalues remain the same under this transformation for an infinite 2D square lattice.
However, this symmetry is broken for#£ 0.

Figure 1 shows the rational magnetic flux versus the energy eigenvalues for a square lattice
in the presence of a uniform as well as a modulating magnetic field. In thisfigure, the hoppingis
isotropic with the hopping energies in theandy-directions given by, = ¢, = 1. Infigure 2
the amplitude of the magnetic modulation is the same as for figure IywithB, /By = 2.0,
but heren = t,/t, = % In both plots, the wave vectds and the ratio of the period of
the lattice to that of the modulating magnetic figld= a/b are the same and are given in
the figure captions. Clearly the magnetic modulation breaks the reflection symmetry of the
eigenvalue spectrum abaut= 0.5. Also, these calculations show that the gaps in the energy
spectrum are altered considerably. We have also computed the eigenvalues for finite wave
vector to examine the effect on the energy spectrum. These results, not shown here, indicate
that the energy eigenvalues depend on igthndk,. In the presence of a strong modulating
magnetic field, figures 1 and 2 show that there are states fer0.5 for negative energies
but there are none for positive energies. This means that a strong modulating magnetic field
causes the eigenvalue spectrum to be noticeably asymmetric about the zero of energy. Also,
the energy spectra in figures 1 and 2doe 0.5 are broadened when compared with the results
in reference [30].

1.0

0.0

Energy

Figure 1. The energyE/t, of a square lattice in a Figure 2. The same as figure 1, except that the hopping
perpendicular magnetic field as a function of the rationabn the lattice is anisotropic such that= 7, /¢, = %

flux quantuma = p/q. The parameters used in the

calculation aren = t,/t, = 1,8 = a/b = %, and

y = B1/Bp = 2.0. The wave vector is chosen with

ky =0,ky, = 0.
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2.2. Hexagonal lattice

We now turn to the calculation of the energy eigenvalues for the hexagonal lattice in the
presence of magnetic modulation as well as a uniform perpendicular magnetic field. We
recently obtained the eigenvalue spectrum for the hexagonal lattice in a uniform external
perpendicular magnetic field [31]. We now extend these calculations to analyse the effect due
to a modulating magnetic field and compare the results with the square lattice presented above.

For a 2D lattice with hexagonal symmetry, it can be shown that in the absence of an
external magnetic field, the lowest energy band with anisotropic nearest-neighbour overlap is
given by [31]

E = 2E, {to COSthkya) + 11 COS((ky +ky/B)a/2) +1_ COS(ky — kyv/3)a /2)} (13)

wherea is the lattice constant and the atom at the origin has nearest neightaur@) and

(+a/2, ++/3a/2), andk = (k,, ky) is the wave vector of an electron. In this notatigyris the
nearest-neighbour overlap in thalirection and.. are the nearest-neighbour overlap integrals
along the symmetry directions which make angles (3 and 2r/3 with this direction.Ey is

an energy scale related to the bandwidth. We now use the Peierls substitution to construct the
Hamiltonian in the presence of a constant external magneticBigdohd a sinusoidal magnetic

field of amplitudeB; in the x-direction. After a straightforward calculation [31], we obtain

the following matrix which must be diagonalized to determine the energy eigenvalues:

1 1 e .
0 81 2 0 o ... 0 _Oe_'kxéqa SIe—Iszqu
1+ ts
1 1 .
8; 0 &2 0 o ... 0 0 _Oe—lkxaqa
[ [
! t
t+ [+
I+ (14)
1
0 0 0 0 o ... 0 5“1_2 Y
Ly
lo sqa "
Zelk,r q 0 0 0 0 - &, 0 8yg-1
) e”‘-'s"” t—oeik"sqa 0 0 o ... l_o S* 0
sq te " sq
where
8 = (1_/L)@Hn + e ihn (15)
with
o
pm = 2nm(p/q) — kya — i cos2rmp). (16)

Here, we assumed that the flux through a unit cell of the hexagonal lattice:ip /g and the
ratio of the period of the lattice to the period of modulatioBis= r/s wherep, ¢, r, ands
are integers. We have also defineih the same way as we did for the square lattice.

Figures 3 and 4 show plots of the rational magnetic flux versus the energy eigenvalues
for a hexagonal lattice in the presence of a uniform and modulating magnetic field. The
ratio of the amplitude of the magnetic modulation to the constant external field is chosen as
y = B1/By = 2.0. The wave vectok and the ratio of the period of the lattice to that of the
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1.0

0.0 —4 — s
6 4 -2 0 2 4 6 8 10
Energy

Figure 3. The energyE/1: of a hexagonal lattice in a Figure 4. The same as figure 3, except thgt= 2 and
perpendicular magnetic field as a function of the rational_ /7 = 1.

flux quantuma = p/q. The parameters used in the

calculation areg = ¢t_/t+ = L, 8 = a/b = %, and

y = B1/Bp = 2.0. The wave vector is chosen with

ky =0,ky, = 0.

modulating magnetic field = a /b are the same in the two figures. Infigure 3, the coefficients

in equation (13) are chosen gas= ¢t~ = . = 1, whereas in figure 4, we havg = 2 and

t— = t. = 1. These results should be compared with the plots for the energy spectrum of a
hexagonal lattice when only a uniform external magnetic field is applied [31].

3. Summary and concluding remarks

In this paper, we have presented a general formulation for determining the energy spectrum
of two-dimensional Bloch electrons subject to a periodic potential of square and hexagonal
symmetry and a uniform as well as a sine-modulated magnetic field. We apply the tight-binding
model for the lowest energy band and obtain the energy spectrum in the presence of a magnetic
field by using an effective Hamiltonian obtained by employing the Peierls substitution. The
method is valid when the modulation magnetic field is of arbitrary strength. The resulting
Schibdinger equation is solved numerically by applying a matrix method when the magnetic
flux through a unit cell of the lattice per flux quantum is a rational fraction and when the ratio
of the period of modulation to the period of the lattice is also rational. The calculated energy
spectrum exhibits recursive properties similar to those discussed by Hofstadter for the case
of a uniform perpendicular magnetic field. Our results show that the presence of modulation
affects the symmetry properties of the energy spectrum.
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