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Abstract. This paper presents an analytical and numerical investigation of the energy spectrum of
two-dimensional Bloch electrons subject to a periodic potential of square and hexagonal symmetry
and a perpendicular sine-modulated magnetic field, applying the tight-binding model. The energy
spectrum is found using an effective Hamiltonian obtained by employing the Peierls substitution in
the ground-state energy band function. The resulting Schrödinger equation is solved by applying a
matrix method. The energy spectrum found exhibits recursive properties similar to those discussed
by Hofstadter for the case of a uniform perpendicular magnetic field. It is the objective of this paper
to show that this technique can be extended successfully in the presence of a modulated magnetic
field of arbitrary strength. We successfully demonstrate a Hofstadter-type spectrum in the presence
of both a uniform and a modulated magnetic field.

1. Introduction

The energy spectrum of an electron system under the influence of both a periodic potential and
a magnetic field has been intensively studied in the last three decades. Recent studies of the
effects of a periodic magnetic field have attracted renewed theoretical interest in the field [1–8].
With the development of submicron lithography and nano-fabrication techniques it became
possible to create crystals in which experimental indications of the Hofstadter spectrum can
be found, demonstrating the validity of the underlying physics [9–13].

Theoretical solution of the problem of the energy spectrum for electron systems has been
addressed in two fundamentally different ways. The tight-binding and the nearly-free-electron
methods are known to represent opposite approaches to the calculation of the electronic band
structure in crystals. The tight-binding method, applicable in the limit of weak magnetic
fields, is a semiclassical method, which starts from electron states localized in real space at
different lattice sites and introduces a single-band effective Hamiltonian by the application
of the Peierls’s substitution [14–17]. The nearly-free-electron method, on the other hand, is
a quantum mechanical approach that is suitable for strong magnetic fields [18–23]. It starts
from plane waves localized in reciprocal space and uses free-electron Landau eigenstates as
a basis and the periodic lattice potential as a perturbation. It is well known that there is a
strong resemblance between the energy spectrum of 2D tight-binding electrons subject to a
uniform perpendicular magnetic field, and that of electrons in Landau states interacting with
a 2D periodic potential. The inclusion of harmonic functions, corresponding to the excited
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states in the matrix elements of the potential, is equivalent to tight-binding models with more
nearest-neighbour interactions [21]. In the study of 2D electrons in a magnetic field the use of
the tight-binding model has provided significant insight. Most of the knowledge that we have
concerning the spectrum and density of states in magnetic fields derives from the analysis of
simple square or hexagonal tight-binding Hamiltonians [24–27]. These analyses suggest that
a recursion is present in the energy spectrum. Increased attention has been given lately to the
study of the spectrum in the case where there is an anisotropy of the hopping integrals. An
asymmetry in the hopping strength can lead to a closing of the gaps [28].

Recently there has been extensive study of electronic properties of 2D electron systems
under nonuniform magnetic fields. However, these studies focused on the effects of magnetic
modulation on free electrons while the problem of calculating the effect of magnetic modulation
on Bloch electrons remains far less explored.

This paper studies the electronic properties of a two-dimensional (2D) electron system
(ES) under the influence of both a periodic potential and a perpendicular one-dimensional
(1D) sine-modulated (SM) magnetic field. The solution to this problem is sought by following
the semiclassical method applicable in the low-magnetic-field regime. The method was first
introduced by Peierls [27] and consists of replacing the Hamiltonian by the tight-binding
electron energy operatorE(k) with the Bloch indexk replaced by the operator(p− eA)/h̄.
The resulting Schr̈odinger equation is a finite-difference equation whose eigenvalues can be
computed for arbitrary wavenumbers by using a matrix approach. Following the calculations
of Gumbs, Miessein, and Huang [29] the Harper equation is modified by adding an additional
flux-dependent phase factor due to the SM magnetic field.

Recently [29], we chose a parameter for the modulating field which was not applicable and
thereby obtained some inaccurate numerical results. Here, we now show how a modulating
magnetic field leads to energy band structure that is different from the Hofstadter’s spectrum
and demonstrate how the self-similarity appearing in the Hofstadter’s spectrum breaks down.
Also, we present results for anisotropic hopping on the lattice in the presence of a modulating
magnetic field [30]. Our method [29] can predict the energy spectrum of 2D electrons in
a square lattice under magnetic modulation, since the method has no theoretical flaws. For
rational values ofa/b (wherea is the lattice constant, whileb is the period of the modulating
field) not equal to one, the model works when the amplitude of the modulating magnetic field is
small compared with the uniform component. This paper underlines the importance of paying
the required attention to even the smallest detail in the process of applying simplifications to
mathematical relations when working in a certain theoretical model, as the conclusions drawn
depend on the outcome of the calculations. It should however, be pointed out that the newly
conducted calculations do not in any way confirm the applicability of the assumption that the
Hofstadter-type spectrum disappears under the conditions of study.

2. General formulation of the problem

2.1. Square lattice

Consider a two-dimensional square lattice with the corresponding periodic potential in the
x–y plane and the magnetic field in thez-direction. The magnetic field is expressed as
B = [B0 + B1(x)]ẑ whereB0 is the magnitude of the uniform component andB1 is the
magnitude of the modulation field. Although other types of modulation are also possible, this
paper discusses the sine-modulated field

B =
[
B0 +B1 sin

(
2πx

b

)]
ẑ (1)
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parallel to thez-axis, whereb is a constant. The corresponding vector potential isA =
(0, Ay(x), 0) in the Landau gauge with

Ay(x) = B0x − B1b

2π
cos

(
2πx

b

)
. (2)

Assuming a tight-binding dispersionε(k), Hofstadter [24] obtained the Schrödinger equation

ε(k) = 2tx cos(kxa) + 2ty cos(kya) (3)

wheretx and ty are the tunnelling bandwidths in thex- andy-directions anda is the lattice
constant. Make the Peierls substitution

kx → p̂x/h̄ ky → (p̂y + eAy(x))/h̄. (4)

This yields the effective Hamiltonian

Ĥ(p) = tx
{
eiap̂x/h̄ + e−iap̂x/h̄

}
+ ty

{
eiaeÂy (x)/h̄eiap̂y/h̄ + e−iaeÂy (x)/h̄e−iap̂y/h̄

}
. (5)

Using the property of translational operators in the plane e−iR·p̂/h̄|r〉 = |r +R〉 along with the
Schr̈odinger equation̂H(p)|r〉 = E|r〉 leads us to the eigenvalue equation for the ground-state
energy of an electron in the 2D square lattice:

tx [φk(x − a, y) + φk(x + a, y)]

+ ty
[
eiaeÂy (x)/h̄φk(x, y − a) + e−iaeÂy (x)/h̄φk(x, y + a)

]
= Eφk(x, y). (6)

We now setx = ma, y = na wherem andn are integers. In the Landau gauge the variable
y is cyclic and can be separated in equation (6) using the following relation:

φk(ma, na) = exp(ikyna)gk(m).

As a consequence, the Schrödinger equation becomes

tx [gk(m− 1) + gk(m + 1)] + 2ty cos

(
aeÂy(x)

h̄
− kya

)
gk(m) = Egk(m). (7)

Equation (7) can be rewritten to give the modified Harper equation in matrix form for the
square lattice with a SM magnetic field as(

gk(m + 1)
gk(m)

)
=
(
ε̃ −1m(ky, α, β) −1

1 0

)(
gk(m)

gk(m− 1)

)
(8)

with

1m(ky, α, β) ≡ 2η cos

(
2πmα − α

β
γ cos(2πmβ)− kya

)
. (9)

Here, we have introduced the following notation:

α = a2B0/(h/e) β = a/b γ = B1/B0

η = ty/tx ε̃ = E/tx.
Thus the effect of magnetic modulation can be studied without any condition imposed on the
modulating field. The modified Harper equation (8) in the presence of magnetic modulation
has an additional term proportional toγ which is the ratio of the amplitude of the magnetic
modulation to the uniform magnetic field when the amplitude of the modulating field is much
less than the constant external magnetic field.

Assume thatα = p/q wherep andq are integers and letm take all integer values from
1 to q in equation (8) to generate a system ofq equations. Theseq equations only repeat
themselves ifβ = 1 which means by equation (1) that there is no effect from modulation since
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we setx = ma. If a andb are not commensurate, i.e.,β is irrational, there is no periodicity
in thex-direction. Consequently, there is no fixed relation betweenα and the number of split
subbands in a Bloch band. Ifβ is irrational, there is no fractal band structure. However, when
β = r/s, wherer ands are integers, the equations forgk(m) will be unchanged under the
replacementm → m + sq. Therefore, the period in thex-direction will besqa instead of
qa when there is no modulation, and there will besq subbands split from a Bloch band for
α = p/q.

We now use the Bloch condition for the electron wavefunction and take

gk(0) = e−ikxsqagk(sq) gk(sq + 1) = eikxsqagk(1). (10)

Thus, we have transformed a two-dimensional problem into a one-dimensional one. Moreover,
it will be sufficient to only solve the problem in the first magnetic Brillouin zone and within
a unit cell. Since Harper’s equation is periodically repeated aftersq cycles, equations (8) and
(10) together give the following eigenvalue equation:

ε̃


gk(1)
gk(2)
· · ·

gk(sq − 1)
gk(sq)

 = A(k, α, β)


gk(1)
gk(2)
· · ·

gk(sq − 1)
gk(sq)

 (11)

where the matrix to be diagonalized is

A(k, α, β) =



11 1 0 0 0 · · · 0 0 e−ikxsqa

1 12 1 0 0 · · · 0 0 0
0 1 13 1 0 · · · 0 0 0
0 0 1 14 1 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 1sq−2 1 0
0 0 0 0 0 · · · 1 1sq−1 1

eikxsqa 0 0 0 0 · · · 0 1 1sq


. (12)

From the matrix equation (11), we deduce the following conclusions:

(a) Forγ = 0, there is no modulating magnetic field, and the matrix reduces to the one
obtained by Hofstadter [24].

(b) For a chosen value ofβ = a/b, cos(2πmβ) in the second term of equation (9) vanishes
for certain values ofm, leading to the cancelling of the modulating component. These
values arem = (2L + 1)/(4β), whereL is an integer. This means that for certain choices
of the modulation period, there is no contribution due to the modulating field to the matrix
elements in equation (12).

(c) For the wave-vector replacementkx → −kx , there is a corresponding change
A(k, α, β) → A∗(k, α, β). Therefore, the energy eigenvalues are not altered by this
change in the wave vector.

(d) Whenγ = 0 andky → −ky , m → −m, the matrixA(k, α, β) in equation (12) is
unchanged. Therefore, the energy eigenvalues remain the same under this transformation.
This is not true forγ 6= 0.
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(e) Whenkx → kx + 2πj/(sqa), for any integerj , we obtain the same matrixA(k, α, β) in
equation (12). This implies that all of the eigenvalues have period 2π/(sqa) in kx-space
for any fixed value ofsq. This is true for both cases withγ = 0 and withγ 6= 0.

(f) If ky → ky ± 2πj/a, for any integerj , all eigenvalues remain the same. This means that
the energy spectrum inky-space has period 2π/a. Moreover, forky → ky + 2πjα/a,
equation (12) will be unchanged whenm→ m + j , for γ = 0. However forγ 6= 0, this
matrix invariance is only true ifjβ is an integer.

(g) Whenγ = 0, clearly forky = 0, the transformationsα → ` − α andα → −α in
equation (12) are equivalent to the changem → −m. As a result, all of the energy
eigenvalues remain the same under this transformation for an infinite 2D square lattice.
However, this symmetry is broken forγ 6= 0.

Figure 1 shows the rational magnetic flux versus the energy eigenvalues for a square lattice
in the presence of a uniform as well as a modulating magnetic field. In this figure, the hopping is
isotropic with the hopping energies in thex- andy-directions given bytx = ty = 1. In figure 2
the amplitude of the magnetic modulation is the same as for figure 1 withγ = B1/B0 = 2.0,
but hereη = ty/tx = 1

2. In both plots, the wave vectork and the ratio of the period of
the lattice to that of the modulating magnetic fieldβ = a/b are the same and are given in
the figure captions. Clearly the magnetic modulation breaks the reflection symmetry of the
eigenvalue spectrum aboutα = 0.5. Also, these calculations show that the gaps in the energy
spectrum are altered considerably. We have also computed the eigenvalues for finite wave
vector to examine the effect on the energy spectrum. These results, not shown here, indicate
that the energy eigenvalues depend on bothkx andky . In the presence of a strong modulating
magnetic field, figures 1 and 2 show that there are states forα = 0.5 for negative energies
but there are none for positive energies. This means that a strong modulating magnetic field
causes the eigenvalue spectrum to be noticeably asymmetric about the zero of energy. Also,
the energy spectra in figures 1 and 2 forα = 0.5 are broadened when compared with the results
in reference [30].

Figure 1. The energyE/tx of a square lattice in a
perpendicular magnetic field as a function of the rational
flux quantumα = p/q. The parameters used in the
calculation areη = ty/tx = 1, β = a/b = 1

4 , and
γ = B1/B0 = 2.0. The wave vector is chosen with
kx = 0, ky = 0.

Figure 2. The same as figure 1, except that the hopping
on the lattice is anisotropic such thatη = ty/tx = 1

2 .
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2.2. Hexagonal lattice

We now turn to the calculation of the energy eigenvalues for the hexagonal lattice in the
presence of magnetic modulation as well as a uniform perpendicular magnetic field. We
recently obtained the eigenvalue spectrum for the hexagonal lattice in a uniform external
perpendicular magnetic field [31]. We now extend these calculations to analyse the effect due
to a modulating magnetic field and compare the results with the square lattice presented above.

For a 2D lattice with hexagonal symmetry, it can be shown that in the absence of an
external magnetic field, the lowest energy band with anisotropic nearest-neighbour overlap is
given by [31]

E = 2E0

{
t0 cos(kxa) + t+ cos((kx + ky

√
3)a/2) + t− cos((kx − ky

√
3)a/2)

}
(13)

wherea is the lattice constant and the atom at the origin has nearest neighbours(±a, 0) and
(±a/2,±√3a/2), andk = (kx, ky) is the wave vector of an electron. In this notation,t0 is the
nearest-neighbour overlap in thex-direction andt± are the nearest-neighbour overlap integrals
along the symmetry directions which make angles ofπ/3 and 2π/3 with this direction.E0 is
an energy scale related to the bandwidth. We now use the Peierls substitution to construct the
Hamiltonian in the presence of a constant external magnetic fieldB0 and a sinusoidal magnetic
field of amplitudeB1 in thex-direction. After a straightforward calculation [31], we obtain
the following matrix which must be diagonalized to determine the energy eigenvalues:

0 δ1
t0

t+
0 0 · · · 0

t0

t+
e−ikxsqa δ∗1e−ikxsqa

δ∗2 0 δ2
t0

t+
0 · · · 0 0

t0

t+
e−ikxsqa

t0

t+
δ∗3 0 δ3

t0

t+
· · · 0 0 0

0
t0

t+
δ∗4 0 δ4 · · · 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 0 δsq−2

t0

t+
t0

t+
eikxsqa 0 0 0 0 · · · δ∗sq−1 0 δsq−1

δsqeikxsqa
t0

t+
eikxsqa 0 0 0 · · · t0

t+
δ∗sq 0



(14)

where

δm ≡ (t−/t+)eiµm + e−iµm (15)

with

µm ≡ 2πm(p/q)− kya − α
β
γ cos(2πmβ). (16)

Here, we assumed that the flux through a unit cell of the hexagonal lattice isα = p/q and the
ratio of the period of the lattice to the period of modulation isβ = r/s wherep, q, r, ands
are integers. We have also definedγ in the same way as we did for the square lattice.

Figures 3 and 4 show plots of the rational magnetic flux versus the energy eigenvalues
for a hexagonal lattice in the presence of a uniform and modulating magnetic field. The
ratio of the amplitude of the magnetic modulation to the constant external field is chosen as
γ = B1/B0 = 2.0. The wave vectork and the ratio of the period of the lattice to that of the



Magnetic subband structure of Bloch electrons 5481

Figure 3. The energyE/t+ of a hexagonal lattice in a
perpendicular magnetic field as a function of the rational
flux quantumα = p/q. The parameters used in the
calculation aret0 = t−/t+ = 1, β = a/b = 1

4 , and
γ = B1/B0 = 2.0. The wave vector is chosen with
kx = 0, ky = 0.

Figure 4. The same as figure 3, except thatt0 = 2 and
t−/t+ = 1.

modulating magnetic fieldβ = a/b are the same in the two figures. In figure 3, the coefficients
in equation (13) are chosen ast0 = t− = t+ = 1, whereas in figure 4, we havet0 = 2 and
t− = t+ = 1. These results should be compared with the plots for the energy spectrum of a
hexagonal lattice when only a uniform external magnetic field is applied [31].

3. Summary and concluding remarks

In this paper, we have presented a general formulation for determining the energy spectrum
of two-dimensional Bloch electrons subject to a periodic potential of square and hexagonal
symmetry and a uniform as well as a sine-modulated magnetic field. We apply the tight-binding
model for the lowest energy band and obtain the energy spectrum in the presence of a magnetic
field by using an effective Hamiltonian obtained by employing the Peierls substitution. The
method is valid when the modulation magnetic field is of arbitrary strength. The resulting
Schr̈odinger equation is solved numerically by applying a matrix method when the magnetic
flux through a unit cell of the lattice per flux quantum is a rational fraction and when the ratio
of the period of modulation to the period of the lattice is also rational. The calculated energy
spectrum exhibits recursive properties similar to those discussed by Hofstadter for the case
of a uniform perpendicular magnetic field. Our results show that the presence of modulation
affects the symmetry properties of the energy spectrum.
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